

AIAA 2000-0722

HEAT RELEASE RATES OF BURNING ITEMS IN FIRES

HYEONG-JIN KIM and DAVID G. LILLEY

Lilley & Associates Route 1 Box 151 Stillwater, OK 74074

38th Aerospace Sciences Meeting & Exhibit 10-13 January 2000 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

HEAT RELEASE RATES OF BURNING ITEMS IN FIRES

Hyeong-Jin Kim* and David G. Lilley** Lilley & Associates Route 1 Box 151 Stillwater, OK 74074

ABSTRACT

Heat release rates of typical items in fires are needed as a prerequisite for estimating fire growth and temperatures in structural fires. That is, these burning rates are required to be specified by the user as input to single-room and multi-room structural fire computer codes like FPETool, FASTLite and HAZARD. Data are given here that permit burning items to be specified in a useful modeled way, taking a t^2 -fire for the growth and decay periods, with a constant maximum heat release rate between these two periods.

INTRODUCTION

Computer codes are available that permit calculations to be made of the effect of a given specified fire on the subsequent environment in a structural fire. Things like temperature of the smoke layer, its depth from the ceiling downwards, its optical density, ceiling, wall and floor temperatures, floor surface heat flux rate, etc are calculated a a function of time in all the rooms of a typical multi-room structural fire. However, the accuracy of these calculations is strongly dependent upon the correctness of the initial fire specifications.

Heat release rates of typical items in fires are needed as a prerequisite for estimating fire growth and temperatures in structural fires. That is, these burning rates are required to be specified by the user as input to singleroom and multi-room structural fire computer codes like FPETool, FASTLite and HAZARD, see Bukowski et al (1989), Peacock et al (1994), and Portier et al (1996). Data are given here that permit burning items to be specified in a useful modeled way, taking a t^2 -fire for the growth and decay periods, with a constant maximum heat

** Professor, Fellow AIAA Copyright 1999 by D. G. Lilley. All rights reserved Published by AIAA with permission. release rate between these two periods. A vast range of many items are considered. Detailed tabulation and graphic display of the parameters (for each item during experimental burns) permits fire modelers to initiate calculations. Further knowledge enables the deduction of when second and subsequent items may become involved, whether flashover may occur, and when conditions may become untenable. Thus, it is clear that many important phenomena that are calculated in fires depend on the quality and accuracy of the initial burn specification.

FUNDAMENTALS

Typically, the heat release rate (heat energy evolving on a per unit time basis) of a fire \dot{Q} (kW) changes as the size of the fire changes, as a function of time t (seconds) after fire ignition. That is, the variation of " \dot{Q} " versus "t" is extremely important in characterizing the rate of growth of a fire.

Data are available for heat release rate vs. time for many items, see for example Babrauskas and Grayson (1992), SFPE (1995) and the data base in Bukowski et al. (1989). Furniture calorimeter and cone calorimeter measurements are available, with data specifically for:

Pools, liquid or plastic Cribs (regular array of sticks) Wood pallets Upholstered furniture Mattresses Pillows Wardrobes (closets) Television sets Christmas trees

^{*} Member AIAA

Curtains (drapes) Electric cable trays Trash bags and containers Industrial rack-stored commodities

Notice that although data may well be available from careful laboratory experiments, the data may not apply directly to real-world fire situations. The laboratory data does not usually take into account the enhancement of burning rates because of radiation feedback.

Full-scale furniture calorimeter tests give useful information on the burning rates of many typical household items. Peak heating values are particularly useful to know, since in some cases a triangular heat release rate vs. time representation can be utilized for simplicity. Upholstered furniture - wood frame, with fireretardant polyurethane padding and olefin cover fabric show peak heat release rates as follows:

F21 Chair	2100 kW	at 260 s
F31 Loveseat	2886 kW	at 230 s
F32 Sofa	3120 kW	at 215 s

The F number used here corresponds to the particular experiment performed, see Bukowski (1989). Other useful peak heat release rates:

Mattress and boxspring	660 kW	at 910 s
Curtain, cotton, 1.87 kg	240 kW	at 175 s
Wastepaper basket, 0.93 kg	15 kW	at 350 s
Television, 39.8 kg	290 kW	at 670 s
Cooking oil, corn, cottonseed,		
etc. 12-inch pan	116 kW	constant
Christmas tree, spruce, 7 kg	650 kW	at 350 s

and the values help to visualize the differences between the items under burning conditions.

Of special concern in fire investigation and computer reconstruction of building fires is the use of accelerants. Liquid fuels are often preferred. They are used to accelerate the development of the fire, as indicated by temperature and spreading rates. On the practical investigative side, features often include: low burns, high temperatures at low hidden locations, rapid house fire development, and particular flame and smoke colors seen by witnesses. Burning rates of liquid pool fires are available in SFPE (1995).

POOL FIRES

The thermal radiation hazards from hydrocarbon spill fires depend on a number of parameters, including the composition of the hydrocarbon, the size and shape of the fire, the duration of the fire, its proximity to the object at risk, and the thermal characteristics of the object exposed to the fire. The state of the art of predicting the thermal environment of hydrocarbon spill fires consists essentially of semiempirical methods, some of which are based on experimental data from small- and medium-scale tests. Needless to day, such semiempirical methods are always subject to uncertainties when experimental data from small-scale fires are extrapolated to predict the thermal properties of very large-scale fires.

A systematic study of liquid hydrocarbon pool fires over the widest range of pool diameters was conducted by Blinov and Khudiakov. Gasoline, tractor kerosene, diesel oil, and solar oil (and, to a limited extent, household kerosene and transformer oil) were burned in cylindrical pans (depth not indicated) of diameters 0.37 cm to 22.9 meters. Liquid burning rates and flame heights were measured, and visual and photographic observations of the flames were recorded. Hottel plotted these data and the results are shown in the Figure. The lower curve of this figure shows the variation of burning velocity (in meters/second of depth burning) as a function of the pan diameter. The upper curves give the ratio of flame height to flame diameter as a function of the pan diameter. The diagonal lines on the lower curves represent lines of constant Reynolds numbers, based on pan diameter.

Useful information about the rate of burning of pool fires is readily available in Tables, see SFPE (1995) for example, via the mass consumed per unit area per unit time. From the energy per unit mass values also given, one can readily compute the heat release rate \dot{Q} in kW, or in Btu per hour since 100,000 Btu/hr = 29.31 kW. It may be noted that for pool diameters less than 1 meter, the burning rate expression is reduced because of a reduction in radiation feedback.

THE t²-FIRE GROWTH MODEL

Emphasis is often placed on the growth phase of the fire. Slow, medium, fast and ultra-fast fire growths may be specified by the t^2 -fire growth model, where, after an initial incubation period,

$$\dot{Q} = \alpha_f (t - t_0)^2$$

where α_f is a fire-growth coefficient (kW/s²) and t₀ is the length of the incubation period (s). The coefficient α_f appears to lie in the range 10⁻³ kW/s² for very slowly developing fires to 1 kW/s² for very fast fire growth. The incubation period (t₀) will depend on the nature of the ignition source and its location, but data are now becoming available (see Babrauskas) on fire growth rates on single items of furniture (upholstered chairs, beds, etc.) which may be quantified in these terms. Suggested values for the coefficient α_f are also given in the formula section of Makefire - a subset of the FPETool Computer Program. The specification there for the fire-growth coefficient α_f (kW/s²) is:

Slow	0.002778 kW/s ²
Medium	0.011111 kW/s ²

Fast	0.044444 kW/s ²
Ultra-fast	0.177778 kW/s ²

and these correspond to growth times of the fire from zero size to 1 MW total heat output in

Slow	600 seconds
Medium	300 seconds
Fast	150 seconds
Ultra-fast	75 seconds

BURNING RATES OF TYPICAL ITEMS

Experimental data are available for a variety of items, giving heat release rate \dot{Q} (kW) vs time (seconds). Each of these graphs is in conformity with several parameters that completely characterize the situation, as given in Figure 1:

 $\begin{array}{ll} t_{o} & \text{time to the onset of ignition} \\ t_{1\,MW} & \text{time to reach 1 MW} \\ t_{to} & \text{level-off time} \\ t_{d} & \text{time at which } \dot{Q} \text{ decay begins} \\ t_{end} & \text{time at which } \dot{Q} \text{ equals zero} \\ t_{g} & \text{growth time} = t_{1\,MW} - t_{o} \end{array}$

Notice that both the ascent and decent are characterized by t²-fire activity:

$$\dot{Q} = \alpha_{g}t^{2}$$
 where $t = t - t_{o}$
 $\dot{Q} = \alpha_{d}t^{2}$ where $t = t_{end} - t$

where α_g and α_d are the fire-growth and fire-decay coefficients (kW/s²), respectively.

These heat release rates \dot{Q} (in kW) vs time t (in seconds) are active only in the growth ($t_o \le t \le t t_{\ell_0}$) and decay ($t_d \le t \le t_{end}$), respectively. The maximum heat release rate \dot{Q}_{max} (kW) occurs when $t_{\ell_0} \le t \le t_d$. The growth time to reach 1 MW = 1,000 kW of heat release rate \dot{Q} is $t_{1 \text{ MW}} - t_o$ seconds, and this is related to the fire-growth parameter α_g (kW/s²) via

$$\alpha_{\rm g} = 1000 / (t_{1 \rm MW} - t_{\rm o})^2$$
.

Simularly the fire-decay parameter α_d (kW/s²) is found via

$$\alpha_{\rm d} = \dot{Q}_{\rm max} / (t_{\rm end} - t_{\rm d})^2.$$

Also note that the maximum heat release rate \dot{Q}_{max} (kW) is related to other parameters via:

$$\dot{Q}_{max} = 1000[(t_{io} - t_o)/(t_{1 MW} - t_o)]^2.$$

In order to characterize in the above fashion the actual experimental data of heat release rate versus time, one proceeds as follows:

- 1. First, one decides the values to be taken for the three key parameters \dot{Q}_{max} (maximum heat release rate), t_{to} (time to reach \dot{Q}_{max}) and t_d (time to start decay). Adjustments are made in order to ensure that the modeled total heat release during the time interval of from t_o to t_d seconds matches the experiment to within 0.1 percent.
- 2. Then, the time to onset of ignition t_o with associated value of fire-growth parameter α_g is chosen so as to match the total heat release during the growth phase of from t_o to t_{fo} seconds. The correspondence of t_o , t_{fo} and α_g is automatic since a t^2 -fire growth is being assumed.
- 3. Finally, the end time t_{end} with associated value of fire-decay parameter α_d is chosen so as to match the total heat release during the decay phase of from t_d to t_{end} seconds. Again, the correspondence of t_d , t_{end} and α_d is automatic since a t^2 -fire decay is being assumed.

Modeled data are given for heat release rate Q (kW) vs. time (seconds) in Tables A, B, C and D respectively as follows:

- 1. Furniture calorimeter data from FASTLite (see Portier et al, 1996).
- 2. Furniture calorimeter data from HAZARD (see Peacock et al, 1994).
- 3. Furniture calorimeter data from Building and Fire Research Laboratory (see BFRL Website, 1999).
- 4. Cone calorimeter data from HAZARD (see Peacock et al, 1994).

The data are also given in Figures as follows:

- 1. Table A, see Figures A1 through A34.
- 2. Table B, see Figures B1 through B21.
- 3. Table C, see Figures C1 through C10.
- 4. Table D, see Fgiures D1 through D25.

Careful perusal and interpretation of the figures will enable the discerning reader to deduce what the values of the defining parameters are. However, for completeness, the data are given directly in the extensive Tables A, B, C, and D in numerical form. Finally \dot{Q} vs. t is given by

Q̇ = 0	$0 \le t \le t_o$
$\dot{Q} = \alpha_g (t - t_o)^2$	$t_o \leq t \leq t_{\ell o}$
$\dot{Q} = \alpha_g \left(t_{lo} - t_o \right)^2$	$t_{\ell o} \leq t \leq t_d$
$\dot{Q} = \alpha_d \left(t_{end} - t\right)^2$	$t_d \leq t \leq t_{end}$
$\dot{\mathbf{Q}} = 0$	t _{end} ≤ t ≤ Infinity

with the parameters taken directly from the Tables for the particular item under consideration.

WHAT HAPPENS NEXT?

During the course of the burning of the first item of furniture in a room, as specified from data such as that just presented in the Table, one of several things might occur. The above has provided information about the burning rate (heat release rate vs. time) of a single specified item in the burn room. What happens next? Either the item burns out without further damage to the surroundings, or one or more nearby items ignite and add fuel to the fire. This can be by direct flame contact (if the second item is judged to be sufficiently close) or, more usually, by radiant heat energy becoming sufficiently large on the surface of the Direct flame contact requires time to second item. pyrolyze the fuel and time to heat the gases produced to their ignition temperature. The radiant flux ignition problem is a very complicated issue, and depends on many factors. The radiant energy comes from the flame above the first item, the upper layer and room surfaces, but simplifying assumptions are sometimes used. As the radiant energy flux rate increases from the first item to the second, often a simple criterion for ignition of the latter is used. A good approximation is that the radiant heat flux (arriving on the surface of the second item) necessary to ignite the second item is:

10 kW/m ²	easily ignitable items, such as thin curtains or loose newsprint
20 kW/m ²	normal items, such as upholstered furniture
40 kW/m ²	difficult to ignite items, such as wood of 0.5 inch or greater thickness

In actuality, ignition is not immediate when the particular level of incident radiant heat flux reaches 10, 20 or 40 kW/m² respectively for easy, normal and difficult to ignite items. These values are used as simple rules of thumb in applied calculations, see Lilley (1995). Fundamental ignition principles, outlined for example in SFPE (1995), suggest that, for fire initiation, a material has to be heated above its critical heat flux CHF value (CHF value is related to the fire point). It was found that, as the surface is exposed to heat flux, initially most of the heat is transferred to the interior of the material. The ignition principles suggest that the rate with which heat is transferred depends on the ignition temperature T_{ig}, ambient temperature T_a, material thermal conductivity k, material specific heat c_p , and the material density ρ . The combined effects are expressed by a parameter defined at the Thermal Response Parameter (TRP) of the material

$$TRP = \Delta T_{ig} \sqrt{k\rho c_p}$$

where $\Delta T_{ig}(= T_{ig} - T_a)$ is the ignition temperature above ambient in degrees K, k is in kW/m-K, ρ is in kg/m³, c_p is in kJ/kg-K, and TRP is in kW-s^{1/2}/m². The TRP is a very useful parameter for the engineering calculations to assess resistance of ignition and fire propagation in as-yet uninvolved items. The ignition principles suggest that, for thermally thick materials, the inverse of the square root of time to ignition is expected to be a linear function of the difference between the external heat flux and the CHF value

$$\sqrt{\frac{1}{t_{ig}}} = \frac{\sqrt{4 / \pi} \left(\dot{q}_{e}^{"} - CHF \right)}{TRP}$$

where t_{ig} is time to ignition sec, \dot{q}_e'' is the external heat flux kW/m², and CHF is in kW/m². Most commonly used materials behave as thermally thick materials and satisfy this equation.

The Critical Heat Flux and the Thermal Response Parameter values for materials derived from the ignition data measured in the Flammability Apparatus and the Cone Calorimeter, by Scudamore et al (1991, are given in Lilley (1998). He also shows in Tables and Figures how the ignition time t_{ig} may be determined from the heat flux \dot{q} " and the Critical Heat Flux CHF and Thermal Response Parameter TRP. Complete data are given in Lilley (1998) so as to enable the ignitability question to be determined quickly. Readers are directed to that study to see fully how the size and material of a pool fire determines the total heat release \dot{Q} , the heat flux \dot{q} " on a target fuel, and the time required for ignition to occur.

FLASHOVER

Whether or not "flashover" occurs during the course of a fire is one of the most important outcomes of a fire calculation. Flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. High radiation heat transfer levels from the original burning item, the flame and plume directly above it, and the hot smoke layer spreading across the ceiling are all considered to be responsible for the heating of the other items in the room, leading to their ignition. Warning signs are heat build-up and "rollover" (small, sporadic flashes of flame that appear near ceiling level or at the top of open doorways or windows of smoke-filled rooms). Factors affecting flashover include room size, ceiling and wall conductivity and flammability, and heat- and smokeproducing quality of room contents. Further research studies relating to this topic include Kim and Lilley (1997 and 1999), and Lilley (1995, 1997 and 1998).

CLOSURE

The ability to determine fire growth in terms of when the second and subsequent objects may ignite (and their burning rates) and whether or not "flashover" occurs depends strongly on the initial fire specification. The focus of this entire document was to characterize the initial item on fire (in terms of burning rate versus time) so as to more accurately be able to calculate fire growth and the possible occurrence of flashover.

Heat release rates of typical items in fires were needed as a prerequisite for estimating fire growth and temperatures in structural fires. That is, these burning rates were required to be specified by the user as input to single-room and multi-room structural fire computer codes like FPETool, FASTLife and HAZARD. Data was given here that permit burning items to be specified in a permit burning items to be specified in a useful modeled way, taking a t^2 -fire for the growth and decay periods, with a constant maximum heat release rate between these two periods.

REFERENCES

- Babrauskas, V. and Grayson, S. J. eds. (1992). "Heat Release in Fires." Elsevier Applied Science, 1992.
- Bukowski, R., et al (1989). "The HAZARD-1 Computer Code Package for Fire Hazard Assessment." NBS(NIST), Gaithersburg, MD.
- Cooper, L. Y. (1984). "Smoke Movement in Rooms of Fire Involvement and Adjacent Spaces." Fire Safety Journal, Vol. 7, 1984, pp. 33-46.
- Drysdale, D. (1985) "An Introduction to Fire Dynamics." Wiley, Chichester, England, 1985.
- Emmons, H. W. (1985). "The Needed Fire Science." Paper in Fire Safety Science (C. E. Grant and P. J. Pagni, eds.), Hemisphere, New York, 1985, pp. 33-53.
- IFSTA (1992). "Essentials of Fire Fighting." 3rd Edition, IFSTA, Stillwater, OK, 1992.
- Karlsson, B. and Quintiere, J. G. (2000). "Enclosure Fire Dynamics," CRC Press, Boca Raton, FL.
- Kim, H.-J. and Lilley, D. G. (1997). "Flashover: A Study of Parametric Effects on the Time to Reach Flashover Conditions." Proc. Of ASME 17th Int. Computers in Engng. Conf./Design Conf. Paper DETC97/CIE-4427, Sacramento, CA, Sept. 14-17, 1997.
- Kim, H.-J. and Lilley, D. G. (1999). "Comparison of Theories for Room Flashover." Paper AIAA 99-0343, Reno, NV, Jan. 11-14, 1999.
- Lilley, D. G. (1995). "Fire Dynamics." Short Course, 1995.
- Lilley, D. G. (1997). "Structural Fire Calculations." Proc. Of ASME 17th Int. Computers in Engng.

Conf./Design Conf. Paper DETC 97/CIE-4428, Sacramento, CA, Sept. 14-17, 1997.

- Lilley, D. G. (1998), "Radiant Ignition of Flammable Materials." Proc. of Int. Joint Power Generation Conf., Baltimore, MD, Aug. 23-26, 1998.
- NFPA (1997). "Fire Protection Handbook." 18th Edition (Cote, A. E. and Linville, J. L. eds.), NFPA, Quincy, MA, 1997.
- Peacock, R. D. et al (1994). "An Update Guide for HAZARD 1 Version 1.2." NIST Report NISTIR 5410, May 1994.
- Portier, R. W., Peacock, R. D. and Reneke, P. A. (1996). "FASTLite: Engineering Tools for Estimating Fire Growth and Smopke Transport." NIST Special Publication 899, Gaithersburg, MD, April 1996. See also: Update to Version 1.0b, Feb., 1997.
- SFPE (1995). "Handbook of Fire Protection Engineering." NFPA, Quincy and SFPE, Boston, MA, 1995.
- Scudamore, M.J., Briggs, P.J. and Prager, F.H. (1991). "Cone Calorimetry - A Review of Tests Carried Out on Plastics for the Association of Plastics Manufacturers in Europe." Fire and Materials, Vol. 15, 1991, pp. 65-84.
- Thomas, P. H. (1974). "Fires in Enclosures." Paper in Heat Transfer in Fires (P. L. Blackshear, ed.), Halsted-Wiley, New York, 1974, pp. 73-94.
- Zukoski, E. E. (1985). "Fluid Dynamic Aspects of Room Fires." Paper in Fire Safety Science (C. E. Grant and P. J. Pagni, eds.), Hemisphere, New York, 1985, pp. 1-30.

Figure 1. Heat Release Rate vs. Time in t²-fire Characterization.

TABLE A. Heat Release Rate vs Time in t²-fire Characterization of FASTLite Data

	CODE	DESCRIPTION	.			.				
Fig. A1.	Wardrobe 1	1/2" Plywood wardrobe, clothing on 16 hangers	30	41 MW 46	3 0	End 500	7038 8	5	αg 0 816377	047400
Fig. A2.	Wardrobe 2	1/8" Plywood wardrobe, clothing on 16 hangers	0	40 10(110	140	6250 D		0.010327	0.01/402
Fig. A3.	Wardrobe 3	1/8" Plywood wardrobe, FR paint, clothing on 16 hangers		30.2				2 C	0.0520.0	D.944444
Fig. A4.	Wardrobe 4	1/8" Plywood wardrobe, FR paint, clothing on 16 hangers	• c	00			0 1 4 4 4 4 C	2	0.450457	0.053168
Fig. A5.	Wardrobe 5	3/4" Particle-board wardrobe, thin plastic coating	, c	150 17			0.1112	0. 1	0.123457	0.033029
Fig. A6.	Chair 1	Chair, one-piece wood-reinforced urethane foam	.				1284.4	150	0.044444	0.000726
Fig. A7.	Chair 2	Chair, polypropylene foam frame, urethane foam, nolvolefin fahric	.			1900	422.5	1000	0.001000	0.000275
Fig. A8.	Chair 3	Chair, thin wood frame. California foam polyolefin fahric	b c				0.0061	001	0.100000	0.016955
Fig. A9.	Chair 4	Chair, urethane foam frame, urethane foam, polyochi, tabric	,				9.69/	200	0.025000	0.001461
Fig. A10.	Chair 5	Chair, wood frame, California foam, Haitian cotton fabric	0 0	350 276	712	1 430	1000.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.277778	0.020661
Fig. A11.	Chair 6	Chair, wood frame, California foam, polyolefin fabric	, c	20 21 20 21		215	0.710	000	0.008163	0.002240
Fig. A12.	Chair 7	Chair, wood frame, FR cotton stuffing, Haitian cotton fabric) C	2000 210			1100.0		0.40000	0.038716
Fig. A13.	Chair 8	Chair, wood frame, FR cotton stuffing, polyolefin fabric	0	400 275	475		2.074		0.000230	0.0001215
Fig. A14.	Chair 9	Chair, wood frame, urethane foam, cotton fabric	0	200 90	310	550	202.5		0.025000	0.003515
Fig. A15.	Chair 10	Chair, wood frame, urethane foam, cotton fabric	0	75 50	250	1250	444 4	75	0.17778	
Fig. A16.	Chair 11	Chair, wood frame, urethane foam, cotton fabric, polyester batting	0	425 347	367	1000	666.6	425	0.005536	0.001664
Fig. A17.	Chair 12	Chair, wood frame, urethane foam, polyolefin fabric	0	80 160	170	420	4000.0	8	0.156250	0.064000
Fig. A18.	Chair 13	Chair, wood frame, urethane foam, quilted cotton/polyolefin, polyester batting	0	200 187	200	500	874.2	200	0.025000	0.000714
Fig. A19.	Bed	Innerspring mattress and boxspring, cotton felt/urethane/sisal spring cover	0	1100 680	1080	1300	382.1	1100	0.000826	0.007896
Fig. A20.	Lounge chair 1	Lounge chair, metal frame, urethane foam, plastic-coated fabric	0	350 170	220	350	235.9	350	0.008163	0.013960
Fig. A21.	Lounge chair 2	Lounge chair, one-piece molded glass fiber, metal legs	0	120 20	21	150	27.8	120	0.069444	0 001669
Fig. A22.	Lounge chair 3	Lounge chair, one-piece molded thermoplastic	0	275 230	430	900	699.5	275	0.013223	0.003167
Fig. A23.	Lounge chair 4	Lounge chair, wood frame, latex foam/cotton stuffing, plastic-coated fabric	0	500 130	140	300	67.6	500	0.004000	0.002641
Fig. A24.	Loveseat 1	Loveseat, mixed foam and cotton batting stuffing, cotton fabric	0	400 350	400	2000	765.6	400	0.006250	0.000299
Fig. A25.	Loveseat 2	Loveseat, wood frame, California foam, polyolefin fabric	0	80 130	160	400	2640.6	80	0.156250	0.045844
FIG. A26.	Loveseat 3	Loveseat, Wood frame, urethane foam, plastic-coated fabric	0	350 330	430	1500	889.0	350	0.008163	0.000776
FIG. A27.	Metal wardrobe 1	Metal wardrobe, clothing on 16 hangers	0	250 125	150	500	250.0	250	0.016000	0.002041
Fig. A28.	Metal wardrobe 2	Metal wardrobe, clothing on 8 hangers	0	50 40	47	200	640.0	50	0.400000	0.027340
Fig. A29.	Patient lounge chair	Patient lounge chair, metal frame, urethane foam cushion	0	170 80	6	150	221.5	170	0.034602	0.061515
Fig. A30.	Sofa 1	Sofa, metal frame, urethane foam, plastic-coated fabric	0	500 260	460	800	270.4	500	0.004000	0 002339
Fig. A31.	Sofa 2	Sofa, wood frame, California foam, polyolefin fabric	0	100 170	250	430	2890.0	10	0.10000	0.089198
Fig. A32.	F21 Chair	F21 Chair, wood frame, polyurethane foam, olefin fabric	140	215 250	250	360	2151.1	75	0.17778	0.177778
Fig. A33.	F31 Loveseat	F31 Loveseat, wood frame, polyurethane foam, olefin fabric	06	165 215	265	390	2777.8	75	0.177778	0.177778
Fig. A34.	F.32 Sofa	F32 Sofa, wood frame, polyurethane foam, olefin fabric	75	150 205	270	400	3004.4	75	0.177778	0.177778

(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)' sponsoring organization.

1

\sim	
<u>`</u> _``	
- 53	
<u> </u>	
5	
<u> </u>	
. =	
•	
<u> </u>	
15	
\smile	
•	
1	
-	
.=	
12	
- H	
-	
_	
(T	
\sim	
_	
+	
-	
\frown	
T	
\sim	
) <u>hi</u>	
-	
-4	
N 1	
-	
1	
يسلسو	
£	
•	
_	
5	
.×	
- int -	
•	
_	
5	
act	
act	
ract	
aract	
laract	
haract	
Charact	
Charact	
e Charact	
e Charact	
re Charact	
fire Charact	
-fire Charact	
² -fire Charact	
t ² -fire Charact	
t ² -fire Charact	
n t ² -fire Charact	
in t ² -fire Charact	
in t ² -fire Charact	
e in t ² -fire Charact	
ne in t ² -fire Charact	
me in t ² -fire Charact	
ime in t ² -fire Charact	
lime in t ² -fire Charact	
Time in t ² -fire Charact	
Time in t ² -fire Charact	
's Time in t ² -fire Charact	
vs Time in t ² -fire Charact	
vs Time in t ² -fire Charact	
e vs Time in t ² -fire Charact	
te vs Time in t ² -fire Charact	
ate vs Time in t ² -fire Charact	
tate vs Time in t ² -fire Charact	
Rate vs Time in t ² -fire Charact	
Rate vs Time in t ² -fire Charact	
e Rate vs Time in t ² -fire Charact	
se Rate vs Time in t ² -fire Charact	
ase Rate vs Time in t ² -fire Charact	
sase Rate vs Time in t ² -fire Charact	
lease Rate vs Time in t ² -fire Charact	
elease Rate vs Time in t ² -fire Charact	
celease Rate vs Time in t ² -fire Charact	
Release Rate vs Time in t ² -fire Charact	
Release Rate vs Time in t ² -fire Charact	
t Release Rate vs Time in t ² -fire Charact	
at Release Rate vs Time in t ² -fire Charact	
eat Release Rate vs Time in t ² -fire Charact	
leat Release Rate vs Time in t ² -fire Charact	
Heat Release Rate vs Time in t ² -fire Charact	
Heat Release Rate vs Time in t ² -fire Charact	
Heat Release Rate vs Time in t ² -fire Charact	
¹ . Heat Release Rate vs Time in t ² -fire Charact	
B. Heat Release Rate vs Time in t ² -fire Charact	
B. Heat Release Rate vs Time in t^2 -fire Charact	
I B. Heat Release Rate vs Time in t^2 -fire Charact	
E B. Heat Release Rate vs Time in t ² -fire Charact	
JE B. Heat Release Rate vs Time in t²-fire Charact	
LE B. Heat Release Rate vs Time in t ² -fire Charact	
BLE B. Heat Release Rate vs Time in t ² -fire Charact	
BLE B. Heat Release Rate vs Time in t ² -fire Charact	
ABLE B. Heat Release Rate vs Time in t ² -fire Charact	
ABLE B. Heat Release Rate vs Time in t ² -fire Charact	
TABLE B. Heat Release Rate vs Time in t ² -fire Charact	

	CODE		DESCRIPTION	IGNITION SOURCE	\$	tı mw	₽.	قر قر	. <u>0</u>	max Le		β	g
Fig. B1.	Bed 1	BED001	Double bed bedding, night table; gyp bd walls; test R1 (85-2998)	Wastebasket&trash,0.75 kg	169	211	230	230 9	36 210	9.4	42 0.	566893 0.	00423
Fig. 82.	Bed 2	BED002	Double bed,bedding,night table;plywood walls;test R5 (85-2998)	Wastebasket&trash,0.75 kg	164	239	360	430 9	98 682	6.5	75 0.	177778 0.	02116
Fig. B3.	Chair 1 (F21)	UPC001	Upholstered chair,F21,wood frame,pu foam-fr,olefin	Gas burner,50kw,200s	126	218	260	260 6	07 213	21.5	92 0.	118147 0.	01761
Fig. B4.	Chair 2 (F23)	UPC002	Chair, F23, wood frame, fr cotton batting, olefin test 24 (82-2604)	Gas burner,50kw,200s	0	538	450	450 19	32 69	9.6 5	38 0.	003455 0.	00031
Fig. B5.	Chair 3 (F25)	UPC003	Upholstered chair,F25,wood frame,pu foam,olefin,test 29	Gas burner,50kw,200sec	106	215	260	260 6	79 199	96.1 1	0 60	084168 0.	01137
Fig. B6.	Chair 4 (F28)	UPC004	Uphols.chair,F28,wood frame,pu/pe/ctn bedding,cotton test 28	Gas burner,50kw,200sec	82	478	420	420 11	84 72	28.5 3	96 0.	006377 0.	00124
Fig. B7.	Chair 5 (F30)	UPC005	Uphols.chair,F30,pu frame,pu foam,olefin,test 30 (82-2604)	Gas burner,50kw,200sec	4	140	130	263 10	17 8′	0.0	0. 00	100000 0.	00142
Fig. B8.	Chair 6	CHR001	Bean bag chair, vinyl/ps foam beads, c05 nbs tn 1103	Newspaper, 396g	88	748	545	718 12	28 47	'9.5 G	60 0.	002296 0.	00184
Fig. B9.	Chair 7	CHR002	Chair, molded flexible pu frame, pu cover test 64 (83-2787)	Gas burner,50kw,200s	644	1662	1330 1	1330 26	85 4!	54.1 10	18 0.	000965 0	00024
Fig. B10.	Chair 8	CHR003	Easy chair,molded ps foam frame,pu pad&cover,c07,test 48	Gas burner,50kw,200s	38	245	240	240 8	83 94	52.3 2	07 0	023338 0.	00230
Fig. 811.	Christmas Tree	CTR001	Christmas tree,spruce,dry, vtt 285,no.17	200 ml isopropanol	290	327	320	350 4	78 65	57.4	37 0.	730460 0.	04012
Fig. B12.	Cooking Oil	CKG001	Cooking Oil, Corn; Cottonseed; Etc In 12in. Pan		0	15	5 1	1000 10	90	1.1	15 4.	44444	
Fig. B13.	Curtain	CUR001	Curtain, Cotton, 0.31kg/M2, Item 9	5ml isopropanoł	123	229	175	175 4	11 22	t0.7	00	089000 0.	00432
Fig. B14.	Loveseat (F31)	UPS002	Loveseat,F31,wood frame,pu foam(fr),olefin test 37 (82-2604)	Gas burner,50kw,200s	71	165	229	249 7	01 282	25.3	9 4 0.	113173 0.	01382
Fig. B15.	Mattress 1	MAT001	Mattress,m05,pu foam,rayon ticking,bedding	Wastebasket+0.72kg cont	269	437	480	480 9	33 157	7.4 1	68 0.	035431 0.	00768
Fig. B16.	Mattress 2	MAT002	Mattress+boxspring(westchase hilton) test 67 (83-2787)	Cigarette lighter	144	858	606	980 22	33 4	18.7 7	4	001962 0.	00026
Fig. B17.	Sofa (F32)	UPS001	Upholstered\sofa,F32,wood\frame,pu foam-fr,olefin test 38	Gas burner,50kw,200s	74	154	211	283 6	51 293	32.7	80 0.	156250 0.	02165
Fig. B18.	Trash Bags	TRB001	Trash bags (3),paper		0	100	58	111 5	17 33	36.4 1	0. 0	100000 0.	00204
Fig. B19.	TV Set	TLV001	Television set, b/w, wood cabinet, exp.3	100ml isopropanol	304	984	670	670 18	72 28	39.7 6	80 0.	002163 0.	00020
Fig. 820.	Wardrobe	CLT001	Wardrobe closet,plywood,fr paint nbsir83-2787 test 42	Cardboard box/paper 0.9kg	70	113	170	170 3	58 54(08.3	43 0.	540833 0.	15302
Fig. B21.	Waste Basket	WPB001	Wastepaper basket,polyethylene,milk cartons,exp.7	10ml isopropanol	115	2034	350	350 12	64	15.0 19	19 0.	000272 0.	00001

7

•

(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)' sponsoring organization.

ata
Ď
aboratory
l I
Researcl
Fire
and
Building
0f]
Characterization
e.
² -fir
n
Time i
te vs
e Ra
eleas
R
Heat
Ċ
BLE
S

	CODE	DESCRIPTION	ţ.	ts ww	ţ	Ł	tend	Ô _{max}	\$	Bم	٩
Fig. C1.	Bunk Bed	BFRL* in February 1996.	186	211	240	240	445	4665.6	25 1	.600000	0.111020
Fig. C2.	Kaisk	Western Fire Center in the summer of 1995.	817	1129	1230	1230	3300	1752.2	312 C	010273	0.000409
Fig. C3.	Loveseat		48	222	350	371	866	3012.4	174 C	033029	0.012294
Fig. C4.	Mattress (Center)	BFRL in February 1996.	6	173	145	219	959	687.7	164 C	037180	0.001256
Fig. C5.	Mattress (Corner)	BFRL in February 1996.	85	294	295	321	484	1009.6	209 C	0.022893	0.037999
Fig. C6.	Small Dresser	BFRL in February 1996.	112	346	423	423	870	1766.4	234 C	0.018263	0.008840
Fig. C7.	Sofa		26	222	390	399	931	3449.0	196 C	0.026031	0.012186
Fig. C8.	Wooden Pallet	BFRL in February 1996.	0	467	634	664	1616	1843.1	467 C	0.004585	0.002034
Fig. C9.	Workstation (2 panels)	Sponsored by GSA** and performed at BFRL in 1991.	132	244	280	280	3276	1746.2	112 0	079719	0.000195
Fig. C10.	Workstation (3 panels)	Sponsored by GSA and performed at BFRL in 1991.	283	386	550	550	1142	6719.7	103 0	0.094260	0.019174
* RFRI	- Building and Fire Researc	h I ahoratory									

BFRL - Building and Fire Research Laboratory
 ** GSA - General Services Administration

8

TABLE D. Heat Release Rate vs Time in t²-fire Characterization of HAZARD Data (Cone Calorimeter)

	CODE		DESCRIPTION		د ت	WM	f.	t L	tend	ù max	ۍ	σ	ρŋ
Fig. D1.	Cotton Fabric	CTN002	Cotton fabric,fr (test 803a)	Fabric	29	89	45	45	206	71.1	60	0.277778	0.002743
Fig. D2	Fir Board	DFR003	Douglas fir (828)	Board	7	32	15	15	1502	187.8	30	1.11111	0.000085
Fig. D3.	Fir Plywood Board 1	DFP002	Douglas fir plywood,1/2in thick (435)	Board	74	124	92	604	1193	129.6	50	0.400000	0.000374
Fig. D4.	Fir Plywood Board 2	DFP002	Douglas fir plywood,1/2in.thick (446)	Board	0	28	13	309	1829	215.6	28	1.275510	0.000033
Fig. D5.	Gypsum Board 1	GBD002	Gypsum board, 1/2in.thick (434)		228	280	243	246	274	83.2	52	0.369822	0.106135
Fig. D6.	Gypsum Board 2	GBD002	Gypsum board,1/2in.thick (448)		9	66	30	30	102	160.0	60	0.277778	0.030864
Fig. D7.	Mattress Composite	MAT001	Mattress ass'y m05,pu foam,rayon ticking (test 296)	Composite	8	44	28	111	164	308.6	36	0.771605	0.109876
Fig. D8.	Oak Board 1	RDO002	Red oak,7/8in.thick (1454)		156	191	166 1	684 2	2310	81.6	35	0.816327	0.000208
Fig. D9.	Oak Board 2	RDO002	Red oak,7/8in.thick (1456)	Board	0	26	11	707	1802	179.0	26	1.479290	0.000149
Fig. D10.	Oak Board 3	RDO002	Red oak,7/8 in.thick (1468)	Board	0	28	13	806	1354	215.6	28	1.275510	0.000718
Fig. D11.	Pine Board 1	PIN002	Pine (838)	Board	14	19	16	637	940	160.0	ŝ	40.000000	0.001743
Fig. D12.	Pine Board 2	PIN002	Pine (842)	Board	111	198	137	834	1511	89.3	87	0.132118	0.000195
Fig. D13.	Pine Board 3	PIN002	White pine (wood),0.75 in (test 487)	Board	0	ø	e	587 4	4048	140.6	8	15.625000	0.000012
Fig. D14.	Pine Board 4	PIN002	White pine (wood),0.75 in (test 493)	Board	40	67	47 1	760	1176	67.2	27	1.371742	0.000007
Fig. D15.	PMMA Sheet 1	MMA001	PMMA 1" black (cb) w/frame (test 1461)	Sheet	0	123	115	804	1032	874.1	123	0.066098	0.016816
Fig. D16.	PMMA Sheet 2	MMA001	PMMA 1" black (cb) w/frame (test 1470)	Sheet	148	218	197 1	689	2240	490.0	70	0.204082	0.001614
Fig. D17.	Polyisocyanurate Foam 1	RP1002	Rigid polyisocyanurate foam,2 in (test 438)	Foam	0	40	6	6	61	50.6	40	0.625000	0.018722
Fig. D18.	Polyisocyanurate Foam 2	RP1002	Rigid polyisocyanurate foam,2 in (test 449)	Foam	0	15	9	9	1127	160.0	15	4 44444	0.000127
Fig. D19.	Polystyrene Foam	PSF004	Polystyrene foam,2 in (test 437)	Foam	84	268	201	201	417	404.3	184	0.029537	0.008666
Fig. D20.	Polyurethane Foam 1	FPU007	Flexible polyurethane foam, fr, 2 in (test 725)	Foam	15	112	80	80	158	449.0	97	0.106281	0.073806
Fig. D21.	Polyurethane Foam 2	RPU001	Rigid polyurethane foam,gm-29/gm-30 (test 257)	Foam	0	33	15	15	260	206.6	33	0.918274	0.003442
Fig. D22.	Polyurethane Foam 3	RPU002	Rigid polyurethane foam,fr,gm-31 (test 258)	Foam	0	36	12	12	115	111.1	36	0.771605	0.010473
Fig. D23.	Polyvinyl Sheet	PVC002	Polyvinyl chloride,0.5 in thick (test 333)	Sheet	12	102	37	703	768	77.2	6	0.123457	0.018263
Fig. D24.	Rayon Fabric	RYN001	Rayon fabric (test 804a)	Fabric	26	73	40	40	71	88.7	47	0.452694	0.092329
Fig. D25.	Wool Fabric	WNE001	Wool fabric/neoprene padding (test 722)	Composite	23	62	45	45	167	318.2	39	0.657462	0.021379
 In this ta ** In this ta 	ble, $t_{\rm I}$ ww refers to the time to ble, $\dot{Q}_{\rm max}$ refers to the maxim	reach I MW um heat rele:	/m ² . ase rate in kW/m ² .										

(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)' sponsoring organization.

Fig. A1. 1/2" Plywood wardrobe, clothing on 16 hangers

Fig. A2. 1/8" Plywood wardrobe, clothing on 16 hangers

Fig. A3. 1/8" Plywood wardrobe, FR paint, clothing on 16 hangers

Fig. A4. 1/8" Plywood wardrobe, FR paint, clothing on 16 hangers

Fig. A5. 3/4" Particle-board wardrobe, thin plastic coating

Fig. A6. Chair, one-piece wood-reinforced urethane foam

Fig. A7. Chair, polypropylene foam frame, urethane foam, polyolefin fabric

Fig. A8. Chair, thin wood frame, California foam, polyolefin fabric

Fig. A10. Chair, wood frame, California foam, Haitian cotton fabric

Fig. A11. Chair, wood frame, California foam, polyolefin fabric

Fig. A12. Chair, wood frame, FR cotton stuffing, Haitian cotton fabric

Fig. A13. Chair, wood frame, FR cotton stuffing, polyolefin fabric

Fig. A14. Chair, wood frame, urethane foam, cotton fabric

Fig. A15. Chair, wood frame, urethane foam, cotton fabric

Fig. A16. Chair, wood frame, urethane foam, cotton fabric, polyester batting

Fig. A17. Chair, wood frame, urethane foam, polyolefin fabric

Fig. A18. Chair, wood frame, urethane foam, quilted cotton/polyolefin, polyester batting

Fig. A19. Innerspring mattress and boxspring, cotton felt/urethane/sisal spring cover

Fig. A20. Lounge chair, metal frame, urethane foam, plastic-coated fabric

Fig. A21. Lounge chair, one-piece molded glass fiber, metal legs

;

Fig. A22. Lounge chair, one-piece molded thermoplastic

Fig. A23. Lounge chair, wood frame, latex foam/cotton stuffing, plastic-coated fabric

Fig. A24. Loveseat, mixed foam and cotton batting stuffing, cotton fabric

Fig. A25. Loveseat, wood frame, California foam, polyolefin fabric

Fig. A26. Loveseat, wood frame, urethane foam, plastic-coated fabric

Fig. A27. Metal wardrobe, clothing on 16 hangers

Fig. A28. Metal wardrobe, clothing on 8 hangers

Fig. A29. Patient lounge chair, metal frame, urethane foam cushion

Fig. A30. Sofa, metal frame, urethane foam, plastic-coated fabric

Fig. A31. Sofa, wood frame, California foam, polyolefin fabric

Fig. A32. F21 Chair, wood frame, polyurethane foam, olefin fabric

Fig. A33. F31 Loveseat, wood frame, polyurethane foam, olefin fabric

Fig. A34. F32 Sofa, wood frame, polyurethane foam, olefin fabric

Fig. B1. Double bed, bedding, night table; gyp bd walls; test R1 (85-2998)

Fig. B2. Double bed, bedding, night table; plywood walls; test R5 (85-2998)

Fig. B3. Upholstered chair, F21, wood frame, pu foam-fr, olefin

Fig. B4. Chair, F23, wood frame, fr cotton batting, olefin test 24(82-2604)

Fig. B5. Upholstered chair, F25, wood frame, pu foam, olefin, test 29

Fig. B6. Uphols.chair, F28, wood frame, pu/pe/ctn bedding, cotton test 28

¢

Fig. B7. Uphols.chair, F30,pu frame, pu foam, olefin, test 30 (82-2604)

Fig. B8. Bean bag chair, vinyl/ps foam beads, c05 nbs tn 1103

Fig. B9. Chair, molded flexible pu frame, pu cover test 64 (83-2787)

Fig. B10. Easy chair, molded ps foam frame, pu pad & cover, c07, test 48

Fig. B11. Christmas tree, spruce, dry, vtt 285, no.17

Fig. B12. Cooking Oil, Corn; Cottonseed; Etc In 12in.Pan

Fig. B13. Curtain, Cotton, 0.31kg/M2, Item 9

Fig. B14. Loveseat, F31, wood frame, pu foam (fr), olefin test 37 (82-2604)

Fig. B15. Mattress, m05, pu foam, rayon ticking, bedding

Fig. B16. Mattress + boxspring (west chase hilton) test 67 (83-2787)

Fig. B17. Upholstered\sofa, F32, wood\frame, pu foam-fr, olefin test 38

Fig. B18. Trash bags (3), paper

Fig. B19. Television set, b/w, wood cabinet, exp.3

Fig. B20. Wardrobe closet, plywood, fr paint nbsir 83-2787 test 42

Fig. B21. Wastepaper basket, polyethylene, milk cartons, exp.7

Fig. C1. Bunk Bed, BFRL in February 1996

Fig. C2. Koisk, Western Fire Center in the summer of 1995

Fig. C3. Loveseat

Fig. C4. Mattress (Center), BFRL in February 1996

Fig. C5. Mattress (Corner), BFRL in February 1996

Fig. C6. Small Dresser, BFRL in February 1996

Fig. C7. Sofa

Fig. C8. Wooden Pallet, BFRL in February 1996

Fig. C9. Workstation (2 panels), Sponsored by GSA and performed at BFRL in 1991

Fig. C10. Workstation (3 panels), Sponsored by GSA and performed at BFRL in 1991

Fig. D1. Cotton fabric, fr (test 803a), Fabric

Fig. D2. Douglas fir (828), Board

Fig. D3. Douglas fir plywood, 1/2 in. thick (435), Board

Fig. D4. Douglas fir plywood, 1/2 in. thick (446), Board

Fig. D6.

Gypsum board, 1/2 in. thick (448)

Fig. D7. Mattress ass'y m05, pu foam, rayon ticking (test 296), Composite

Fig. D8. Red oak, 7/8 in. thick (1454)

Fig. D9. Red oak, 7/8 in. thick (1456), Board

Fig. D10. Red oak, 7/8 in. thick (1468), Board

Fig. D11. Pine (838), Board

Fig. D12. Pine (842), Board

Fig. D13. White pine (wood), 0.75 in (test 487), Board

Fig. D14. White pine (wood), 0.75 in (test 493), Board

Fig. D15. PMMA 1" black (cb) w/frame (test 1461), Sheet

Fig. D16. PMMA 1" black (cb) w/frame (test 1470), Sheet

Fig. D17. Rigid polyisocyanurate foam, 2 in (test 438), Foam

Fig. D18. Rigid polyisocyanurate foam, 2 in (test 449), Foam

ł

Fig. D19. Polystyrene foam, 2 in (test 437), Foam

Fig. D20. Flexible polyurethane foam, fr, 2 in (test 725), Foam

Fig. D21. Rigid polyurethane foam, gm-29/gm-30 (test 257), Foam

Fig. D22. Rigid polyurethane foam, fr, gm-31 (test 258), Foam

Fig. D23. Polyvinyl chloride, 0.5 in thick (test 333), Sheet

Fig. D24. Rayon fabric (test 804a), Fabric

5

Fig. D25. Wool fabric/neoprene padding (test 722), Composite